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Preface

A modern computational tool, artificial neural networks (ANNs), was used to
construct a series of prediction and forecasting models for two different scale
watersheds — the Sava River and a segment of the Mississippi River. The purpose
of this study is to provide another useful tool for military operation. The Military
Hydrology Program, Coastal and Hydraulics Laboratory (CHL), Vicksburg, MS,
U.S. Army Engineer Research and Development Center (ERDC), funded this
study.

This study was conducted in CHL during the period January 1999 to
September 1999 under the direction of Dr. James R. Houston, Director, CHL;
Mr. Thomas W. Richardson, Assistant Director, CHL, Dr. William H. McAnally,
Chief, Estuaries and Hydro-Sciences Division, CHL; and Mr. Thomas .
Pokrefke, Jr., Chief, Modeling Systems Branch, Estuaries and Hydro-Sciences
Division.

The study was conducted by Dr. Bernard B. Hsieh and CPT Charles L.
Bartos, Modeling Systems Branch. Dr. William D. Martin and Mr. Thomas L.
Engdahl, Watershed Systems Group, Modeling Systems Branch, provided much
guidance and information for the Sava River watershed. Drs. Kuo-Lin Hsu and
Hoshin V. Gupta, University of Arizona, Tucson, AZ, provided technical peer
review for the report. Drs. Bin Zhang and R. S. Govindaraju, Purdue University,
West Lafayette, IN, provided technical assistance.

During publication of this report, Dr. James R. Houston was Director of
ERDC, and COL James S. Weller, EN, was Commander.

The contents of this report are not to be used for advertising,
publication, or promotional purposes. Citation of trade nanes
does not constitute an official endorsement or approval of the
use of such commercial products.




1 Introduction

Background

The ability to forecast a river’s flow and stage characteristics can be useful in
providing a warning to those in the immediate area of impending catastrophic
events typically associated with flood conditions. Furthermore, the ability to
perform expedient forecasting can assist water resources management personnel
in regulating reservoir outflows during low river flows. For military applica-
tions, the accurate forecasting of river stage and flow is critical during any
military operation since this directly impacts a military unit’s force mobility
capability.

Most hydrologic processes exhibit a high degree of temporal and spatial
variability, and are further plagued by issues of nonlinearity of physical
processes, conflicting spatial and temporal scales, and uncertainty in parameter
estimates. The capability exists to extract the relationship between the inputs and
outputs of such a process, without the physics being explicitly provided. It is also
possible to provide a map from one multivariable space to another, given a set of
data representing that mapping. These properties of Artificial Neural Networks
(ANNSs) may be well suited to the problems of estimation and prediction in
hydrology.

Two major approaches for modeling the rainfall-runoff or prediction of river
flow have been developed in the literature: conceptual (physical basis) modeling
and system theoretic modeling. Conceptual models are important in understand-
ing hydrologic processes. There are many practical situations, such as stream
flow forecasting, where the main concern is making accurate prediction at
specific watershed locations. In a situation for predicting desired locations, a
hydrologist may prefer not to expend the time and efforts required in developing
and implementing a conceptual model or numerical model, but instead imple-
ment a simpler system theoretic model. ANNs provide the capability to supple-
ment hydrological modeling in a fraction of the time.

The development of such system theoretic hydrologic models, both the linear
modeling approach and nonlinear decomposition and recursive parameter
approach has been used for many years. However, the former approach does not
attempt to represent the nonlinear dynamics inherent in the transformation of
input series to output series and therefore may not always perform well. The
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latter approach, the nonlinear decomposition and recursive parameter approach,
allows the model parameters to vary with time and can to some extent
compensate for the model structure errors that arise from such assumptions. The
computational procedures are complicated.

Recently, significant progress in the fields of nonlinear pattern recognition
and system control theory have made this possible through advanced
computational techniques available through ANNs. The significant contribution
of this modern technique is to solve the nonlinearity and time-delay problem for
hydrological applications.

Applications of ANNs in rainfall-runoft modeling and stream flow
forecasting have been described in many sources. The algorithms to perform
these approaches were from backpropagation (Hjelmfelt and Wang 1996), time-
delayed (Karunanithi et al. 1994), recurrent C (Carriere, Mobaghegh, and
Gaskari, 1996), radial-basis function (Fernando and Jayawardena 1998), modular
(Zhang and Govindaraju 1998), to self-organizing (Hsu, Gupta and Sorooshian
1998). It is noted that only one reference for each algorithm is cited.

Study Objective and Scope

The objective: To demonstrate the applicability of the system theoretic ANN
approach in developing effective nonlinear models of a river stage, river flow
forecasting process without the need to explicitly represent the internal
hydrologic structure of a watershed model. The Sava River watershed was of
particular interest, with its variable hydrological conditions and its previous
hydrologic analysis in support of military operations. A large-scale watershed,
such as the Mississippi River, was also analyzed to further demonstrate the
capability of flood forecasting (rainfall-runoff process) by ANNs.

In the Sava River analysis, data from the various stream gages was used as
input. The goal was to determine and select input from those sites that afforded
the maximum warning time for military operations further downstream.

This report provides a general overview of ANNs and important concepts
associated with them. (Chapter 2 and Appendix A). This report also addresses
the approach used in selecting the best algorithm to operate an ANN for
hydrological forecasting (Appendix B) and to discuss the practical implementa-
tion of an ANN mode! (Appendix C) when utilizing commercially available
software to perform its operation. Furthermore, this report analyzes what is
required to construct several ANN models with different time-scales for two
totally different watersheds (Chapter 3 and 4). In follow-on discussion
(Chapter 5), the following areas are highlighted: forecasting reliability due to the
length of a training record, approach algorithms for use in different situations,
data arrangement order for training, cross-validation, testing, and finally, the
testing accuracy due to the selection of activation functions, and the performance
of testing accuracy due to data representation. As a final wrap-up, technical
findings and recommendations are stated in the conclusion.

Chapter 1
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2 An Introduction of the
Computation Tool—
Artificial Neural Networks
(ANN)

This chapter introduces a new computation tool, Artificial Neural Networks
(ANN), used to conduct a hydrological analysis of two watersheds using flow
and gage data. The appendixes in this report provide a more detailed description
of the ANN modeling methodology used. Appendix A describes the learning
strategies, major components for building ANNs, and procedures used to
construct an ANN model. Appendix B lists the basic ANN algorithms used for
hydrologic forecasting systems with an emphasis on the Back—Propagation (BP)
algorithm. Appendix C illustrates the procedures used with the software,
NeuroSolutions for Excel, and discusses the practical implementations this
software has for ANN modeling and those associated learning processes.

ANNs Features and Applications

ANN:Ss, quite simply, are computational devices or a universal approximator.
They can be implemented in the form of a computer chip or simulated on con-
ventional serial computers. ANN is a type of biologically inspired computational
model based on the functioning of the human brain. Like humans, ANNs can
learn to recognize patterns by repeated exposure to many different examples. The
main feature, besides having the ability to learn, is to associate and to be error-
tolerant. Unlike conventional problem-solving algorithms, ANNs can be trained
to perform a particular task. This is done by presenting the system with a
representative set of examples describing the problem, namely in the form of
input and output pairing samples.

ANNSs will then extrapolate the mapping between input and output data.
After training, the ANN can be used to recognize data that are similar to any of
the examples shown during the training phase. The ANNSs can even recognize
incomplete or noisy data — an important feature that is often used for prediction,
diagnosis or control purposes. Furthermore, ANNs have the ability to self-
organize, therefore enabling segmentation or coarse coding of data.

Chapter 2 An Introduction of the Computation Tool—Artificial Neural Networks (ANN)




Over the last few years, ANNs have seen many successful applications of
neural computing in commercial, academic, and military applications. Their
benefits include pattern recognition, process control, signal processing, and
optimization. ANNSs are presently being used to solve a variety of problems such
as detection, estimation, discrimination, classification, optimization, prediction,
interpolation, extrapolation, clustering, or some combination of these problems in
many scientific and engineering applications. Typical hydrological applications
that ANNs have the capability for is to model rainfall-runoff, stream flow,
groundwater management, water quality simulation, and precipitation
phenomena.

Basic Structure of ANN

An ANN’s basic processing element is the “node”, which is similar to a
human’s neuron structure. The node has one or more input lines and one or more
output lines emulating from it. The input and output lines can be connected to
other neighboring nodes to form an artificial “neural-like” network. If the neuron
has multiple inputs, it sums the signal that it receives through the several input
lines. These processing elements can receive input signals and then output infor-
mation at a particular strength to the input paths of other processing elements
through a connection weight that is modified as the system learns. Besides the
input and output layers, there is an intermediate layer of neurons in between
called the “hidden layer”. Figure 1 shows a fully connected feedforward network
with one hidden layer and output layer. Noted: This system consists of / nodes
for input layer, / nodes for hidden layer, and k (k=1 in this figure) nodes for
output layer.

A neuron collects information from all preceding neurons relative to the flow
of the information and propagates its output to the neurons in the following layer.
The output of each preceding neuron is modulated by a correspondent weight
before affecting the activity of the neuron. This activity is then modified by an
activiation function and becomes the final output of the neutron. The signal is
then propagated to the neurons of the next layer. This process is demonstrated as
Figure 2.

Chapter 2 An Introduction of the Computation Tool—Aurtificial Neural Networks (ANN})




Input Hidden Output
layer layer layer

Figure 1. Fully connected feedforward network with one hidden layer and output
layer
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3 Sava River Application

Sava River watershed and modeling needs for
military operations

The Sava River (Figures 3 and 4) is the largest river in the former
Yugoslavia. Since Yugoslavia was divided into several new republics, the Sava
River’s origin is in Slovenia. The Sava River separates the countries of Croatia,
Bosnia, and part of Serbia. The total drainage area at the confluence of the Sava
and Danube River comprises 96 thousand square kilometers and the watershed
length is 2,255 km. The length of the Sava River is 950 km.

Radece Gaunge
Ornac Gauge
Davor Gauge
Slavonski Gauge
Zupanja gauge

N 0 N\t =

Figure 3. Sava River Basin and its flow stations used for the study

During the peacekeeping mission in Bosnia, the prediction of river stages for
military crossing became particularly important. The accuracy of prediction was
critical to determine the schedule of military operations, especially the locations
where floating bridges were constructed maintained. Therefore, a river flow and
stage forecasting system was required to address changes in weather conditions.
During the actual operating (Dec 95 - May 97) accurate river forecasts were

Chapter 3 Sava River Application
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provided using a combination of river engineering expertise and lumped
parameter numerical models. Post fact, the ANN method was applied to
determine its ability to provide forecasts for the Sava River.

Database Development for ANN models

A number of river flows and stage data were available from two-dozen gage
sites in both the mainstream and tributaries of the Sava River. These were
collected during the actual operation. The best data files that can currently be
used to construct the model are eight stations for river flow and two stations for
river stage. These river flow stations are along the main portion of the Sava
River. The data sets include one year of daily mean flow (Figures 5 and 6) and
forty years of monthly mean flow (Figures 7 and 8). The two most downstream
stations, Zupanja and Slovonski Brod are bridge sites used by NATO forces for
military peace keeping operations. In this analysis, these are gage stations
(Gages 8 and 9). The daily river stage data (2-1/2 years, Figure 9) is only
available for these two most downstream stations. This modeling effort was
designed to find an alternative method to predict downstream flow and stage
based on the minimum upstream information other than the numerical watershed
model simulation.

Sava River Stage Prediction Model

Using the data available, a river stage-forecasting model was constructed
using the Slavonski Brod gage (upstream, Gage 8) to predict the Zupanja gage
(downstream, Gage 9). The data used consisted of 2.5 years of data. The ANN
modeling procedure was divided into one training set (1 year), a cross-validation
set (6 months) and a testing set (1 year).

Since this is the first model described in the report, the procedure will be
explained in more detail. This model was trained using Multilayer Perceptron
(MLP) with a Back Propagation (BP) algorithm having one hidden layer and two
imput nodes. Using the NeuroSolutions software, the Multilayer Perceptron panel
was used to set the parameters that are specific to this neural model. The number
of inputs, outputs and exemplars are computed from the input data files. The only
parameter to set for the MLP is the number of hidden layers.

The hidden layer panel was used to specify the number of processing ele-
ments (PEs), the type of nonlinearity, the type of learning rule, and the learning
parameters of the first hidden layer. In this case, the network had two hidden PEs
with linear axon type transfer function. The training uses momentum learning
with a step size of 1.0 and momentum factor of 0.7.

The output layer panel is the same as the previous panel in that the number of
PEs is fixed to the number of output (1). It should be noted that the default step
size is one magnitude smaller (set to 0.1) than the previous layer. This is because
the error attenuates, as it is back propagated through the network. Since the error

Chapter 3 Sava River Application
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is largest towards the output of the network, the output layer requires a smaller
step size than that of the hidden layer in order to balance the weight updates.

In the supervised learning panel, the maximum epochs (number of training
iterations) are set to 1,000. However, the network may learn the problem in less
iterations that this. Usually, the default configuration terminates the training
when the error falls below 0.01. Figure 10 summaries the learning curve for the
first 50 iterations. It compares the Mean Squared Error (MSE) for both training
and cross-validation. At the 20™ iteration, the cross-validation has reached its
minimum value of the MSE. The optimal weights (total weights is not necessary
to be 1) for these stage prediction models are:

Hidden Axon = LinearAxon (0.0636; 0.1251)
Output Axon = LinearAxon (0.1400)
Hidden Weights = (0.7638; -1.7133)

Output Weights =(0.2074;-0. 04714)

Table 1 is a summary of performance based on six statistical measurements.
These six measurements are: Mean Squared Error, Normalized Mean Squared
Error, Mean Absolute Error, Minimum Absolute Error, Maximum Absolute Error
and the Correlation Coefficient. The 3 major components for building an
Artificial Neural Network, in this order, are: Training, Cross-Validation and
Testing. Based on the results in Table 1, the three stages used in building the
ANN show very good training and prediction results with high correlation
coefficients and low normalized mean square error. However, with the
increasing number of NMSE and the lowering in the numerical value of the
correlation coefficient from training to testing, it appears the model is not fully
generalized. This is because there is a time lag between these two stations for
signal traveling. Figures 11 through 13 show the graphical comparisons between
ANN model results and field measurements as training, cross-validation and
testing respectively.

In order to examine the model forecasting capability, the forecasting ranges
were set up to an analysis period of present to 3 days ahead and several scenarios
were conducted. For example, a forecasting model was constructed by using
current and previous 2-day stage data at the upstream location (Slavonski Brod)
as inputs and using up to 3 days ahead stage data at the downstream location
(Zupanja) as the output. This formed a three-input/three-output system. This
model was again trained by a MLP with a BP algorithm. The performance
analysis of this model is summarized as Table 2. This approach eliminates the
loss information for forecasting due to past information. With these results, it is
expected about 0.52 meters mean absolute error and a correlation coefficient of
0.911. It also explained the fact that the forecasting reliability decreases with the
length of forecasting increases.
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Table 1
Performance Analysis of Sava River Stage (m) Prediction Model
with MPLs
Training Cross-Validation Testing
MSE 0.0936 0.0601 0.2069
NMSE 0.0183 0.0166 0.0592
MAE 0.2385 0.1894 0.2661
Min Abs Error 0.0005 0.0009 0.0018
Max Abs Error 1.2870 0.8747 2.6596
R 0.9908 0.9931 0.9725

Sava River Daily Flow Prediction Model

As described above, a data file for river flow exists only for eight stations
along the main portion of the Sava River from upstream to downstream.
Station 8 (Slavonski Brod) is the most downstream gage (no flow gauge at
Zupanja) and one of two military bridging sites. From the preliminary analysis
for river flow distribution, the first four stations show very similar flow patterns.
The flow pattern starts to change at station 5 (Ornac) due to merging tributary
flow into the Sava River. The flow pattern change even more rapidly from
station 5 to station 7 (Davor) due to the more complicated hydrographic
conditions and geomorphology.

Only one-year of flow data was available. Therefore, the length of the
training set becomes shorter. Thus, it was decided to use two locations as the
inputs: one model using station 1 and station 5 with time lags, trying to predict
the flow at station 8. Since there is obvious time lag between station 1 and
station 5 and station 8, the model input’s preparation gets more complicated if the
Multilayer Perceptron Algorithm has to be used. This type of algorithm is called
a static classifier. It means that the input-output map depends only on the present
input. If it needs to process temporal data, then each time the sample has to be
fed to a different input. The result is a very large network. The time-lagged
recurrent network (TLRN) model can overcome this disadvantage. TLRNs are
MLPs extended with short-term memory structures that have local recurrent
connections. The TLRN is a very appropriate model for processing temporal
information. The operation procedure for TLRN will not discussed here.

The computational results using TLRN for two-inputs/one output river flow
system are presented in Figures 14 through 16. While the training (6 month’s
data) shows a fair agreement, the cross-validation data (1 month) and testing data
(5 months) overestimate the results with some degree of deviation.

The explanation for the difference in the results is: the first 6 months’ flow
patterns are quite different from the last six month patterns and the record for
training is not long enough to adjust the difference from station 1 and 5 to
station 8. In addition, the period of hydrologic cycle is an annual event. In order
for an ANN to learn different patterns, a multiple annual cycle data would be
more beneficial. Some improvement was found if the input series also included
station 7. Figures 17 through 19 show the revised mode] results.
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Table 2
Performance Analysis of Sava River Stage Prediction
Training Cross-Validation Testing
MSE 0.2400 0.4362 0.6714
NMSE 0.0682 0.1241 0.1913
MAE 0.2801 0.3922 0.5236
Min Abs Error 0.0019 0.0005 0.0005
Max Abs Error 3.2841 46113 5.1429
R 0.9708 0.9449 0.9115

Sava River Monthly Flow Prediction Model

With the modeling experience regarding the flow prediction described above,
it is interesting to investigate the ANN performance with different time scales.
Presently, there exists forty years of historical (1926-1965) monthly mean flow
data for the Sava River. The TLRN was used to establish an ANN model
segmenting the forty years of data as follows: First fifteen years data (1926-1940)
as the training set, the next ten years data (1941-1950) as the cross-validation set,
and the last fifteen years data (1951-1965) as the testing set. This model used
gage stations’ 1 (Radece), 5 (Jasenov) and 7 (Slavonski Brod) as inputs and
station 8 (Zupanja) as the output. Results: a good agreement (0.0208 meter
NMSE and 0.9898 correlation coefficient) was found in the testing performance.

A second scenario was investigated. Here, station 7 was disregarded as one
of the inputs and the performance was investigated. The results were
surprisingly satisfactory. The correlation coefficient did slightly drop to 0.9778.
Figures 20 through 22 show the performance of the 3 learning stages.
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4 A Mississippi River
Segment Application

The Mississippi River Basin (Figure 23) is the largest watershed in the
United States. Understanding the dynamic changes of this river flow system is a
subject of nationwide concern. In this chapter, a rainfall-runoff model using
ANNSs was incorporated in a segment of the lower portion of the Mississippi
River. The purpose was to compare the diverse flexibility of ANNS in its ability
to test, analyze and predict hydrological characteristics of a larger, more data
rich, watershed compared to our earlier analysis with the Sava River Basin.
Figure 24, below, shows the segment of the lower Mississippi River that was
used in this study.

Watershed Description

The Lower Mississippi River is considered to begin at Cairo, IL at the
confluence of the Ohio and Middle Mississippi Rivers. It travels southward a
distance of approximately 954 miles emptying in the Gulf of Mexico at Head of
Passes, LA. In 1973, a serious flood occurred in the Lower Mississippi River.
The peak flows for the crest stages were over 1.5 million cfs. Major flooding
that occurred during that time showed the need for a system that better forecasts
river stage/ river flow characteristics. This could prove vital in the future to
serve as an essential tool in reducing flood damage through better forecasting
systems if these conditions would happen again.

In this study, ANN was used to predict the river flow at Memphis, TN, from
the upstream gage at Thebes, IL, near the confluence with the Ohio River. The
gage station at Metropolis, Illinois provided characteristic flow of the Ohio
River. Further downstream, we considered the lateral contributions of the
tributaries: Obion, Hatchie, Loosahatchie, and Wolf Rivers in West Tennessee, as
well as precipitation influence throughout this river basin. The combined flow in
the Mississippi River below the confluence point is approximately 55 percent out
of the Ohio River and 45 percent out of the Mississippi River main stem.
Therefore, the purpose of this study was to identify the prediction capability with
minimum hydrologic information using ANNs to determine the contribution of
the Ohio River to flooding portions of the lower Mississippi River Basin. Under
this consideration, two upstream river flow gages were used as the model input
instead of using one combined river flow that represented both input values from
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Thebes, 11,

Memphis, TN A Flow Station

® Rain Gauge

A

Figure 24. A Mississippi River segment watershed

the Middle Mississippi and Ohio Rivers. This was essential to further examine
attributions in our ANN modeling by both river systems prior to the flow
confluence.

Database Development and Preliminary Data
Analysis

A database was developed using 16 years (from 1975 to 1990) of daily river
flow data from three major stations Thebes, Illinois (Upper portion of Mississippi
River), Metropolis, Hlinois (Ohio River), and Memphis, Tennessee; (Figure 25);
four river tributaries in Western Tennessee using the closet gage reading to the
Mississippi River on each tributary; (Figure 26). Some of the data had missing
values, ranging from several months to a two-year lapse. Reconstruction and
estimation of these data sets were established by the regression method, drainage
area ratio and transfer function model using ANN. Additionally, we applied
daily record from ten precipitation collection stations (Figure 27), which were
uniformly (approximately selected) distributed over the study portion of the river
basin.
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A preliminary data analysis was conducted by a series of X-Y plots between
the downstream flow and possible inputs. Figure 28 examined the relationship
between each tributary and the downstream flow patterns. While the Obion River
shows some contribution to the flow rate at Memphis, the Loosahatchie, Hatchie
and Wolf Rivers are not strongly related it. Since this correlation is highly
nonlinear due to the hydrologic processes and time-lagged for signal travel, it
was determined to combine all four tributaries as one single lateral contribution.
The similar treatment also is applied to the total precipitation. Under this
consideration, Figure 29 represents the correlation of four major inputs with the
downstream flow as the output. The ranking of data input significance for this
study is the contribution of main stem of the Mississippi River at Thebes, Ohio
River at Metropolis, total tributary flows, and precipitation values in this region.

ANN Rainfall-Runoff Model

With our study of the Mississippi River, we analyzed different configurations
of neural network models, those that varied the input layer structure, to compare
numerical results. These results are in the form of statistical parameters. Some
of the more common parameters that were analyzed after our input variations
were: Correlation Coefficient (CC) and Normalized Mean Squared Error
(NMSE). Our approach for this study using ANNs started from the simplest
structure (two inputs/one output) to more complicated hydrological systematic
model (four input/one output). In other words, a rainfall-runoff model was first
constructed using two upstream flows as inputs and the downstream river flow as
the output. The first 6 years’ of data were used as the training; the next 2 years’
data used as the cross-validation set, and the last 8 years used as the testing data.
A MLP feed-forward BP architecture design was adopted. Fairly high accuracy,
statistically speaking, in comparing the testing sets based on the performance of
NMSE and CC was evident. The CC ranges were 0.95, 0.93 and 0.94 for the
training, cross-validation and testing sets respectively. However, graphical
comparisons show the spikes match very well, but there was a noticeable phase
shift that existed between the observed values and simulated outputs. This
difference implies the consideration of time lags is required.

The second test of this model was to use the Time Lagged Recurrent
Networks (TLRNs). The TLRN approach produced a significant improvement.
Excellent agreement for three learning stages is shown in Figures 30, 31 and 32.
With an extremely high CC for both training and testing, this indicated that the
downstream flow prediction might only require the information in the upper
stream gages without the knowledge of the watershed characteristics (e.g.
precipitation).

The next scenario of this study was to add the rainfall factor and total
tributary flow as the input variable. This gives three variables to the data set input
for ANN modeling. While two different types of models consisting of three-
input/one output systems (two upstream flow and total tributary; two upstream
flow and total rainfall) are easy to converge for the training of a neural network, a
model having four-input/one output model has the difficulty for convergence
given a LinearAxon output activation function. In spite of changing the activation
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to SigmoidAxon as the output activation function and increasing the total
iteration numbers (4000) for training, this model still shows the lowest
performance among these combinations. This is sometimes the case with ANN
modeling procedures. The more familiar the neural net modeler is with model
design, the easier it becomes to determine the correct “recipe” in producing a
reliable artificial neural network model.

Table 3 summarizes the performance for this variable input ANN build
scenario. No additional improvement is gained from both the total rainfall and
total tributary flow. The reason could be the hydrologic process is a highly
nonlinear relationship. The rainfall contribution to the flow system is related to
the infiltration rate, soil moisture content and other interactions. We concluded
contribution of tributary flow is very minor compared to the magnitude of
Mississippi River flow scale. The physical reason requires further research, such
as using the difference between downstream and upstream flows as the model
output to identify the contribution of total rainfall and total and/or individual
tributary factors.

Table 3

Performance Analysis of Mississippi River Segment R - R Model
Training Cross-Validation Testing

Input x Output NMSE r NMSE r NMSE r

2 <1 00190 [0.9905 [0.0774 | 0.9638 0.0210 0.9911

3 < 1 (Precipitation) | 0.0211 | 0.9895 | 0.0956 | 0.9545 0.0226 0.9906

3 < 1 (Flow) 0.0216 | 09892 | 0.0974 | 0.9527 0.0260 0.9886

41 0.0503 | 0.9751 | 0.1384 | 0.9306 0.0552 0.9728

NMSE = Normalized Mean Squared Error.
r = Correlation Coefficient.

Another alternative to check the performance of network training, such as the
sensitivity analysis, is to know the effect that each of the inputs is having on the
network output. This provides feedback as to which input variables are the most
significant. The process by removing the insignificant variables can reduce the
size of the network, which in turn reduces the complexity and the training times.
The basic idea of the sensitivity analysis about mean is that the inputs to the
network are shifted slightly and the corresponding change in the output is
reported either as a percentage or a raw difference. Figure 33 shows the
significance for each input related to the output. Our result from this study
indicated the total rainfall and total tributary flow still remain minor influences to
the model.
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Figure 33a-b. The sensitivity analysis about mean for four-inputs/one output riverflow
prediction model of Mississippi River segment (a) upstream station
Thebes (b) upstream station Metropolis
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Figure 33c-d. The sensitivity analysis about mean for four-inputs/one output riverflow
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5 Discussions

To fully develop an ANN model requires the knowledge of existing methods
necessary to address specific problem solving. This problem solving is usually in
the form of choosing a mathematical algorithm, as applied to an artificial neural
network, to determine the “best fit” of data that best represents a specified
nonlinear data relationship, having the best global minimum results, in the
shortest time. The course of constructing reliable models usually, from
experience, requires several trial-and-error attempts at first. This chapter
addresses several findings and particular goals investigated with our research
using ANN modeling for a general hydrologic forecasting system and what was
determined “best” depending on the specific situation.

Forecasting Reliability due to the Length of
Training Record

It is interesting to know how reliable a prediction would be if only limited
data were available. This was demonstrated in our Sava River Study by selecting
a single station and repeating the model run with different record lengths. The
river stage at the Zupanja site was selected to perform this test.

Nine test runs with MLPs were conducted with different lengths of training,
cross-validation, and testing data with forecasting ranges from 1 day to 3 days.
The results of testing are summarized in Table 4. Six statistical parameters were
used to determine the prediction reliability. This table provides the forecasting
reliability giving the length of record and expected criterion of accuracy for this
station. The reliability usually decreased, as the training record length got shorter.
For example, for only a 3 months’ record, a 3-day prediction has over 1-m
prediction error (1.02m) and the correlation coefficient (CC) is about 0.92.

Prediction Reliability due to Approach Algorithms

With computers continually advancing in technology and speed, the training
time required to operate different algorithms in artificial neural networks may no
longer be such a critical factor if the training record is short and the design
architecture is not complex. The testing accuracy could worsen if the selection of
the algorithm to represent the problem is not proper for the modeling simulation.

Chapter 5 Discussions



Table 4
Prediction Reliability Due to the Length of Training Record for
Sava River Stage Prediction Model

MSE NMSE | MAE Min Abs E | Max Abs Error | r
1 yr training 1dayp. | 0.0821 [ 0.0233 | 0.2015 | 0.0002 1.3868 0.9884
2dayp. | 0.2838 [ 0.0808 | 0.4020 | 0.0027 2.3479 0.9595
3dayp. | 0.5554 | 0.1583 | 05802 | 0.0036 3.2460 0.9203
6 mo training | 1dayp. [ 0.1125 | 0.0241 | 0.2336 | 0.0004 2.0161 0.9885
2 dayp. | 0.3413 [ 0.0731 | 0.4075 | 0.0001 3.3268 0.9628
3dayp. | 0.6491 | 0.1390 | 0.5990 | 0.0024 3.8329 0.9283
3 mo training | 1dayp. | 0.6955 | 0.2053 | 0.6783 | 0.0041 1.5347 0.9731
2dayp. | 0.9933 | 0.3041 | 0.8544 | 0.0034 1.7320 0.9489
3dayp. | 1.3350 | 0.4227 | 1.0194 | 0.0201 1.9215 0.9174

Four different algorithms for the example of the river flow prediction of the
Mississippi River were used to demonstrate this comparison (Table 5). While the
traditional BP algorithm without time shift input process showed the least
accuracy, the Recurrent Algorithm represented the best results. The results
indicate that the information from input to output mapping with certain memory
length and strong nonlinearity can best describe this hydrological phenomenon.
In this examination, the maximum iteration number (1,000) was set; therefore,
the other algorithms may perform good training if they have more time to
converge, such as with a Time-Lagged Algorithm (result being very close to the
results with a Recurrent Network). The same test (Table 6) was also investigated
by using the upstream-downstream river stage data set from the Sava River.
While the TLRN derived the best result, the Radial Basis Function (RBF)
algorithm obtained the largest error. The poor performance of testing for the
RBEF is mainly due to the high NMSE obtained during the cross-validation

Process.
Table 5
Prediction Reliability Due to Approach Algorithms for Mississippi
River Segment Model
Backpropagation with
Backpropagation | Time Shift Input Time-Delay | Recurrent

Training | NMSE | 0.0966 0.0303 0.0194 0.0168

R 0.9505 0.9847 0.9903 0.9918
Cross-V | NMSE | 0.1448 0.0416 0.0665 0.0652

R 0.9286 0.9807 0.9679 0.9680
Testing | NMSE [ 0.1042 0.0344 0.0210 0.0171

R 0.9475 0.9834 0.9909 0.9922
Table 6
Comparison of Model Prediction Reliability Due to Approach
Algorithms

Backpropagation with
Backpropagation | Time Shift Input Time-Delay | Recurrent

Training | NMSE | 0.0966 0.0303 0.0194 0.0168

R 0.9505 0.9847 0.9903 0.9918
Cross-V | NMSE | 0.1448 0.0416 0.0665 0.0652

R 0.9286 0.9807 0.9679 0.9680
Testing NMSE | 0.1042 0.0344 0.0210 0.0171

R 0.9475 0.9834 0.9909 0.9922
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In summary, the Time-Lagged and Recurrent Algorithms are good
candidates for hydrological forecasting; both in flow or stage data analysis. The
performance of testing is also related to the learning processes such as learning
rate and momentum factor. It requires further testing for other algorithms.

Testing Accuracy due to the order of Data
Arrangement

The regular data arrangement for conducting the learning and reasoning
processes is to use the time sequence order. For example, the training data set
usually uses the earliest occurred information. However, for real application,
such as missing data recovery, it might need to solve the interpolation or
extrapolation problem. The accuracy of this prediction due to the order of
training, cross-validation, and testing has to be examined.

An approach using an arrangement of four different data sequences was
designed appearing as Figure 34 for the Mississippi River two-input/one output
application. The RUNO is the original arrangement (first 6 years’ as training, the
next two years as cross-validation, and the last eight years as the testing). The
performance of the NMSE and correlation coefficient for each case is
summarized as Table 7. The excellent performance and similar result were found
for each case. However, the better correlation coefficient was obtained when
using the latest portion of data set as the training information.

Table 7
Performance Analysis of ANN due to Data Arrangement
Training Cross-Validation Testing
NMSE r NMSE r NMSE r

Run 0 0.0190 0.9905 0.0744 0.9638 0.0210 0.9911
Run 1 00232 0.9883 0.0265 0.9895 0.0169 09925
Run 2 0.0159 0.9920 0.0389 0.9816 0.0259 0.9896
Run 3 0.0177 0.9911 0.0191 0.9905 0.0208 0.9915

NMSE = Normalized Mean Squared Error.

r = Correlation Coefficient.

Selection of Activation Functions for Time-Lagged
Recurrent Networks

From the Sava and Mississippi Rivers studies, the TLRN was a very
attractive and appropriate model for processing temporal information. Since the
training algorithm used with TLRNs is more advanced than standard BP, the
selection of these activation functions for the hidden layers and output layer is
crucial to obtain good learning process. For the hidden layer process element,
the TLRN has special memory system, such as TDNNAxon, GammaAxon, and
LaguarreAxon. The TDNN memory structure is simply a cascade of ideal delays.
The gamma memory is a cascade of leaky integration. The Laguarre memory is
slightly more sophisticated than the gamma memory in that it orthogonalizes the
memory space.
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For the output layer process element, several activation functions, such as
LinearAxon and SigmoidAxon, can be selected. This section (Table 8)
summarizes the test for different combinations of activation functions of hidden
layer and output layer using forty years monthly mean flow data at Sava River
(three input/one output system).

Table 8

Performance Analysis of Sava River, 3 Input x 1 Output, 40 yr Monthly Data

Transfer Function Training Cross-Validation Correlation Coefficient (r) Comparison
Hidden Layer/Output Layer FMSE | MMSE | FMSE | MMSE Time (sec) | Training C-V Testing |
TDNN/Linear Axon 0.0030 | 0.0030 | 0.0024 | 0.0024 10 0.9829 0.9892 | 0.9898
Gamma/Linear Axon 0.0028 | 0.0029 | 0.0018 | 0.0018 8 0.9835 0.9823 | 0.9934
Laguarre/Linear Axon 0.0029 | 0.0029 | 0.0018 | 0.0018 20 0.9836 0.9922 | 0.9932
TDNN/Tanh Axon 0.0041 { 0.0041 | 0.0091 | 0.0087 13 0.9712 0.9625 | 0.945
TDNN/Sigmoid Axon 0.0128 | 0.0128 | 0.0184 | 0.0184 11 0.7565 0.7494 | 0.7954
TDNN/Linear Tanh Axon 0.0067 { 0.0067 | 0.0254 | 0.0249 10 0.9541 0.8706 | 0.9092
TDNN/Bias Axon 0.0034 | 0.0034 | 0.0036 | 0.0036 10 0.9861 0.9906 | 0.9915
TDNN/Axon 0.0023 | 0.0023 | 0.0026 | 0.0026 9 0.9865 0.9888 | 0.9906
TDNN/Linear Sigmoid Axon 0.0105 | 0.0105 | 0.0153 | 0.0153 10 0.7243 0.6963 | 0.7531

FMSE = Final Mean Squared Error.
MMSE = Minimum Mean Squared Error.
r = Correlation Coefficient.

The best combinations are TDNN/Linear Axon, Gamma/Linear Axon,
Laguarre/LinearAxon, TDNN/Bias Axon, and TDNN/Axon. The performance
analysis, using the correlation coefficient as comparison, was over 0.99 for each
of these combinations. However, the Laguarre/Linear Axon takes more time for
train. The Sigmoid Axon and Linear Sigmoid Axon are slow convergent
activation functions. The LinearAxon is a good choice for selection as an output
process element and had the best performance overall. The Tanh (Hyperbolic
Tangent) Axon family tended to overtrain, however.

Testing Accuracy Due to Data Representation for
the Mississippi River Segment Model

In the previous chapter, it was concluded that an accurate downstream flow
prediction while using ANNs, was a result of the gage data input from the two
upstream flows. The total tributary flow and regional rainfall input contributed
very little to improve the accuracy of the learning process for a time-lagged
algorithm in ANNs. A sensitivity analysis or principal component analysis can
be used to identify the most significant input variables to the desired output.
However, in order to investigate how the data representation affects the ANNs
model performance, a model run from a series of input/output topology was per-
formed. In addition, another algorithm, Jordan-Elman partial recurrent network,
was also considered to compare the performance of time-lagged networks.

Two parameter structures (Columns 1 and 2 of Table 9), namely an input/
output parameter and an input variable parameter, were identified. The first
parameter represents the number of input and output variables. For example, the
parameter 4 x 1 represents a four-input and one-output system. The second
parameter involves three variables that address the input data: upstream flow
gages, tributary flow and precipitation.
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Table 9

Testing Accuracy Due to Data Representation for the Mississippi River Segment Model

Upstream Flow, Jordan-Elman Time Lagged Recurrent

Input/Output | Tributary, Rainfall NMSE r NMSE r

21 (2,0,0) c 0.0227 0.9908 Q 0.0210 0.9911

4 <1 (2,2,0) o 0.0206 0.9917 * 0.2267 0.9545

31 (2,1,0) C 0.0231 0.9907 < 0.0260 0.9886

6~ 1 (2,4,0) < 0.0269 0.9896 * 0.1152 0.9606

8~ 1 (2,4,2) s 0.0251 0.9898 * 0.1016 0.9614
10 < 1 (2,4,4) * 0.8165 0.9364 * 0.1138 0.9497

4 <1 2,1, 1) o] 0.0214 0.9912 * 0.0552 0.9728
16 < 1 (2, 4, 10) * 0.2425 0.8837 * 0.0963 0.9528

Transfer function combinations (hidden layer/output layer)

o = Linear Axon/Linear Axon

* = Sigmoid Axon/Sigmoid Axon

NMSE = Normalized Mean Squared Error
r = Correlation Coefficient

Chapter 5 Dis

Two conditions were considered to represent tributary and rainfall informa-
tion. For simplification in training the ANN model, the total tributary and total
rainfall data were obtained by the summation of four individual tributaries and
sixteen rainfall stations respectively. However, this assumption led to an incon-
sistency with the basic principles of a hydrological process—those nonlinearity
and time-delay affects involved when constructing a model. Which meant, under
these conditions, each input variable had the same travel time to pass the signal
to the output variable. This summation process assumed that a linear superposi-
tion principle applied, thus leading to a poor performance by the ANN model.
Referring to Table 9, the second column lists the number of inputs in parenthesis
based on those input values chosen, incorporating either upstream flow, tributary
and rainfall data or a combination of two or all three values for the modeling
process.

From the preliminary data analysis, it was found that the Obion and Loosa-
hatchie Rivers and four rainfall stations correlated to the downstream flow.
Therefore, the value 2 individually represents these two rivers and the value 4
individually represents all four rivers as the second element (tributary) of the
input variable parameter. Two of the four rainfall stations, one station near the
confluence of the main stem of Mississippi and Ohio Rivers and the other station
close to Memphis, were slightly higher in correlation than the other two stations.
Similarly, the value 2 of the third element for input variable parameter represents
these two indicated two precipitation stations. The value 4 of that element
represents four correlated precipitation stations.

Two pairs of nonlinear transfer functions (activation), namely Linear
Axon/Linear Axon and Sigmoid Axon/Sigmoid Axon were used to describe the
nonlinearity of corresponding hidden/output layers for both algorithms. The
maximum iteration was 1,000 and the NMSE and correlation coefficients were
used to represent the performance for testing.
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Several findings were summarized in Table 9:

a. The Jordan-Elman partial recurrent network, in general, had better
performance than the Time-lagged network, particularly when the
number of input variables increases. This implied that the Jordan-Elman
network has a stronger tolerance for “noise” in a system.

b. Rows 1,2,4,5, 6, and 8 show the increasing dimenston of individual
tributary and rainfall information. From both NMSE and correlation
coefficient, it can be concluded that the optimal performance occurred
with an input variable parameter selection of (2,2,2).

¢. Rows 3 and 4 show the data representing tributary flow. Although there
was no significant difference of performance between these two cases for
Jordan-Elman networks, both networks’ performance worsened with an
input variable parameter (2,4,0). This indicated a bad performance
would be expected if more uncorrected inputs were included.

d. Rows 7 and 8 show the combined influence of both tributary and rainfall
for data representation. Excellent performance was obtained by the input
variable parameter (2,1,1) for a Jordan-Elman network. This indicated a
simplification of data representation could contribute the improvement of
performance. However, it might not be used to predict local simulation
behavior since the local effect has been transtferred to a summation
variable.

Chapter 5 Discussions




6 Conclusions

ANN algorithms were successfully applied to two different scale watershed
systems for river flow and stage prediction, addressing two primary hydrological
phenomenons: time delay and nonlinearity.

In the lower portions of the Mississippi River, river flow characteristics at
Memphis, TN can be predicted with a high degree of accuracy from two
upstream gages, even with no rainfall data and tributary flow data provided. This
model also can be used to analyze the influence (if any) by the flow input of the
Ohio River downstream on the Mississippi River. The study shows that tributary
flow contributes to the river flow prediction in the downstream portions of the
river, but very little additional prediction accuracy was gained. Some possible
explanations for this: With the compilation of tributary flow into one value from
the summation of four separate data values, along with the summation of ten
separate precipitation collection stations values into one value representing total
rainfall, we are assuming that these non-linear relationships are and should be
treated like a linear process. In essence, we are combining unlikely relationships
between linear processes and group time-delay phenomena, and treating as a
neural network that can be solved using a simple time delay problem. With
additional input variables, performance will be affected by additional noise
created by the network. It can be concluded that by using the minimum input
variables that have good correlation to existing output variables, optimal
performance will be achieved.

Less accurate results were obtained for the Sava River daily flow study
mainly due to the limited length of available data sets. The excellent performance
was found by ANN model for forty years monthly mean data set for the Sava
River. With two upstream data sets available, the model can accurately predict
the downstream monthly flow.

The prediction for river stage/flow can be obtained by generating the rela-
tionship between training length and performance parameters. The proper selec-
tion for a solution algorithm and activations for processing nonlinearity could
help increase the model accuracy. The data arrangement sequence for learning
and reasoning processes has very little influence to the model accuracy. How-
ever, using the last portion of data as the training set might get better perform-
ance when testing. The time-lagged recurrent network and Jordan-Elman partial
recurrent network are good selections for investigating the river flow/stage fore-
casting system. TDNN and LinearAxon is a candidate for process element of
hidden layer and output layer respectively.

Chapter 6 Conclusions
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In conclusion, the best performance of an ANN for flow prediction, as all the
ANNs modeling study, heavily depends on not only the length of the data sets
but also whether the most significant patterns were included in the process.

Chapter 6 Conclusions
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Appendix A
Fundamental Aspects of ANNs

Learning Strategies

Neural network models use supervised and unsupervised learning modes
(Figure A1). Learning entails training the network by presenting training patterns
to its visible layers. The aim of learning is to set the connection weights and
internal representation so that the desired output is obtained. The most common
performance measure of learning is to compare the mean squared error between
the network output and the actual output value.

In supervised learning, the neural network is trained with a data set in the
form of input-output data pairs, provided by a “teacher”. The network receives
the input values and calculates an output, which is then compared with the
correct value. The aim of the training is to teach the network to map a correct
output vector for every input vector by developing appropriate connections in the
model. A parameter searching procedure aims to minimize the error function and
1o obtain the optimal weights. After reaching the point where there are no
additional weight changes required, that the neural network reaches global
stability and is “trained.”

Unsupervised learning is conducted without the teacher, using a training data
set, which consists only of input data. The neural network is training itself to
achieve stability, when the weights attain constant values. This type of learning is
suitable for applications dealing with the clustering of input data, reduction of
input dimensions, data compression and similar types of applications. Networks
trained by this method are called self-organizing networks. Examples of this:
Adaptive Resonance Theory (ART) Network and Kohonen’s Self-Organizing
Feature Maps (SOFM) (Hush, Horne 1993). The network can organize the inputs
in any way it wishes. The processing elements can be organized in clusters with
either competition or cooperation between the clusters occurring.
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Major Components for Building Artificial Neural
Networks

(1) Training. A network learns by adjusting the biases and weights that link
its neurons. Before actually training begins, a network’s weights and biases must
be set to small random values. Obtaining the best set of weights that will be
utilized during the cross-validation and testing process is the main goal here.

(2) Cross-validation. Method used in conjunction with Step 1, it is a process
to monitor and finalize established weights derived through the training process.
This is necessary to prevent over training. Over training can actually degrade
performance on the test set. A portion of the training set should be set-aside for
the purpose of Cross-Validation.

(3) Testing. Proving the performance generalization of the neural networks
and establishing the best set of weights to use to derive a global minimum error
result.

Procedures Used to Construct an ANN Model

The neural network design and use life cycle is a complex dynamic process
with many steps. NeuroSolution, Inc. (1999) summarizes the following steps
used to construct a neural network:

(1) Understand the data. Neural networks cannot be used as “black boxes”,
even in the best circumstances. There is no substitute for a firm understanding of
the data. Explore the data in as many ways as possible. First: Try to understand
the physical process that produced the data.

(2) Plot the data. Examine the statistics for interpreting the data. Finally, Use
digital signal processing analysis techniques to understand the data in the
frequency domain.

Preprocessing the data: Taking the insight gained from “understanding the data”
and encoding it into the data.

(3) Choose a desired Input-Output Mapping. Decide what the neural network
is to accomplish. In particular, what is to be the desired input-output
relationship? Sometimes this can require laborious hand coding of the data.

(4) Choose a Neural Architecture. For regression, always start out with a
linear network. For classification, always start out with a linear discriminant
classifier. Even if these networks do not perform well, they provide a baseline
comparison for other networks as you graduate in complexity. Also, a
consideration here is whether an unsupervised network can perform the desired
input-output mapping.

(5) Train the Network. If possible, monitor the training with a subset of the
training exemplars set aside as a cross-validation set. If the data are too small to
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use cross-validation, then stop the training when the learning curve first starts to
level off.

(6) Repeat the Training. There is a high degree of variability in the
performance of a network trained multiple times, but starting from different
initial conditions. Therefore, the training should be repeated several times,
varying the size of the network, and/or the learning parameters. Among those
networks that perform the best (on the cross-validation set, if available), choose
the one with the smallest number of free weights.

(7) Perform Sensitivity Analysis. Sensitivity analysis measures the effect of
small changes in the input channels on the output, and is computed over the
whole training set. It can be used to identify superfluous input channels.
Eliminate those channels and repeat the training process.

(8) Test the Network on the New Data. This is where you put the network to
use. If you have carefully followed the previous steps, the network should
generalize well to new data.

(9) Update the Training. Occasionally, when enough data are accumulated,

include old test data in with the existing training set, and repeat the entire training
process.
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Appendix B
ANN Algorithms for Hydrologic
Forecasting

Basic ANN Algorithms for Hydrologic Forecasting
Systems

(1) Multi-layered Feed Forward Neural Network (same as Figure B1). Also
known as Multilayer Perceptrons (MLPs), these networks are typically
trained with static backpropagation. These networks have found their
way into countless applications requiring static pattern classification.
Their main advantage is that they are easy to use, straightforward in
conceptual design, and that they can approximate any input/output map.
The key disadvantages are that they train slowly, and require large
amounts of training data (typically three times more training samples than
network weights). (NeuroDimension, 1999)

(2) Time-Delayed Neural Network (TDNN), (Figure B1). This incorporates
the use of a static network to process time series data by simply
converting the temporal sequence into a static pattern by unfolding the
sequence over time. That is, time is treated as another dimension in the
problem. The process is accomplished by feeding the input sequence
into a tapped delay line of finite extent, then feeding the taps from the
delay line into a static neural network architecture like a MLP. TDNNs
have been successfully used and applied to nonlinear time series
prediction problems. (Hush, et al, 1993)

(3) Recurrent Neural Network (Figure B2). Consisting of two types: Fully
recurrent networks feed back the hidden layer to itself. Partially recurrent
networks start with a fully recurrent net and add a feedforward
connection that bypasses the recurrence, effectively treating the recurrent
part as a state memory. Recurrent networks have an infinite memory
depth and thus find relationships through time as well as through the
instantaneous input space. Most real-world data contains information in
its time structure. These networks are state-of-the-art in nonlinear time
series prediction, system identification, and temporal pattern
classification. (NeuroDimension, 1999)
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Figure B1. Time-lagged neural network
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Figure B2. Recurrent neural network
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(4) Self-Organizing Linear Output (SOLO), (Figure B3). Consists of a
hybrid model structure that links a self-organizing feature map (SOFM)
with a piece-wise locally /inear output mapping (LO). SOLO uses simple
piecewise mappings to represent the system local input-output behavior.
The overall structure results in a two-stage training procedure that is
significantly less costly and easier to implement because it does not
involve non-linear global optimization. (Hsu, et al, 1998)

(5) Radial-Basis Function Neural Network (Figure B4). A Radial Basis
Function (RBF) network is a two-layer network whose output nodes form
a linear combination of the basis (or kernel) functions computed by the
hidden layer nodes. The basis functions in the hidden layer produce a
localized response to input stimulus. That is, they produce a significant
nonzero response only when the input falls within a localized region of
the input space. For this reason the network is sometimes referred to as
the “localized receptive field” network. The RBF network can be used
for both classification and functional approximation, just like the MLP.
In theory, the RBF network, like the MLP, is capable of forming an
arbitrarily close approximation to any continuous nonlinear mapping.
The primary difference between the two is the nature of their basis
functions. The basis functions in the RBF network cover only small-
localized regions. (Hush, et al, 1993)

Back-Propagation (BP) Training Algorithm

The basic architecture of an ANNSs is the MLP. MLPs are feed-forward nets
with one or more layers of nodes between the input and output nodes. These
additional layers contain hidden units or nodes that are not directly connected to
both the input and output nodes. MLPs overcome many of the limitations of
single-layer perceptrons, but were generally not used in the past because effective
training algorithms were not available. The development of new algorithms has
changed this outlook significantly. The capabilities of MLPs stem from the
nonlinearities used within nodes.

The BP Training Algorithm, which fully incorporates the MLP architecture,
is currently the most general-purpose, commonly used neural-network paradigm.
It is the most commonly used supervised training algorithm among the MLP. The
development of the Back-Propagation Algorithm introduced a new method of
moditying the network weights by minimizing the error between a target and
computed objects. In back-propagation networks, the information is processed in
the forward direction from the input layer to hidden layer(s) and then to the
output layer.

Optimization of training weights
The objective of a Back-Propagation Network (BPN) is to find the weights

that approximate target values of output with a selected accuracy. The Least-
Mean-Square-Error Method along with the Generalized-Delta Rule is used to
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Figure B4. Radial-basis function neural network

optimize the network weights in BPN. The Gradient-Descent Method, along with
the Chain Rule of Derivatives, is employed to modify the network weights.

Basically, the BP Algorithm attempts to develop a function that correctly
represents the given data set. The adjustment of the interconnection weights
during training employs a method known as “error back propagation” in which
the weight associated with each connection is adjusted by an amount proportional
to the strength of the signal in the connection and the total measure of the error.
(Rummelhart, 1986)

When discussing the modification of network weights, the gradient descent
method is analogous to an error-minimization process. Error-minimization is an
attempt to fit a closed-form solution to a set of empirical data points, such that the
solution deviates from the exact value by a minimal amount. In general, the back
propagation-training algorithm is an iterative gradient algorithm designed to
minimize the mean square error between the actual output of a multi-layer feed-
forward perceptron and the desired output. It employs the techniques of
propagating error terms required to adapt weights back from nodes in the output
layer to nodes in lower (hidden) layers.
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Operation of the BP algorithm

The overall operation of the BP Algorithm is as follows: The net is trained by
initially selecting small random weights and internal thresholds and then
presenting all training data repeatedly (Lippmann, 1987). The learning process
begins with the presentation of an input pattern to the BPN. The input pattern is
propagated through the entire network until an output pattern is produced. The
BPN then makes use of the “generalized delta rule” to determine the error for the
current pattern contributed by every unit in the network. Finally, each unit
modifies its input connection weights slightly in a direction that reduces its error
signal, and the process is repeated for the next pattern (Lippmann, 1987, Skapura,
1995).

The error between the output of the network and target outputs is computed
at the end of each forward pass. If an error is higher than a selected value, the
procedure continues with a reverse pass: otherwise training 1s stopped. In the
reverse pass, or actual “back propagation™ function of this algorithm, the weights
in the network are modified using the error value. The modification of weights in
the output layer is different from the modification of weights in the intermediate
layers because target values do not exist. Therefore, BP uses the derivatives of
the objective function with respect to the weights in the entire network to
distribute the error to neurons in each layer in the entire network (Wasserman,
1990).

The next input/output set is applied and the connection weights are
readjusted to minimize this new error. In this way, the BP algorithm can be seen
to be a form of gradient descent for finding the minimum value of the multi-
dimensional error function. This procedure is repeated until all training data sets
have been applied. The whole process is repeated starting from the first data set
again, once more, and continued until the total error for all data sets is sufficiently
small and subsequent adjustments to the weights are inconsequential. The ANNs
is now said to have learned a relationship between the input and output training
data and a function that best describes this non-linear data set has been derived.
Now, the neural network is “trained™.

Mathematical description of BP

MLPs extend the perceptron with hidden layers, i.e., layers of processing
elements that are not connected to the external world. There are two important
characteristics of the MLP. First, its processing elements are nonlinear. The
nonlinearity function must be smooth. Second, they are fully interconnected such
that any element of a given layer feeds the entire next layer.

Zhang (1998) summarizes the procedures of the BP algorithm for three layer
feed forward networks. The major steps are described as follows:

Each input neuron K receives input signal x, (k=1,2... m, m is number of
inputs) and sends this signal to all units in the following layers toward the output
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layer. Meanwhile, each hidden neuron 7 (i=1,2... p) computes its total weighted
input and applies to its activation function.

u; (n) =Xwy (n) %, (n) (O
Vi =fui(n) )

where w;; is connection weight including bias. y; is output of hidden neuron / and
input to output layer.

Each output neuron j ( /=/,2... 0, 0 is number of output neurons) computes its
total weighted input and applies to its activation function.

i () = Zwj; (n) yi (n) 3)
Yi (n) = f(u;(n) (4)

Each output neuron j receives a target value corresponding to the input training
pattern to evaluate the error term and computes its local gradient &(n)

& () = -¢;(n) f (1)) )

Then calculates and adjusts its connection weight

Wi () = wji (n-1) -+ 16 (n) y; (n) + adwy; (n-1) (6)

Each hidden neuron i receives propagated error term from output layer and
computes its local gradient & (n)

&) =1 (u:(n) £ ) w; (7)
then calculates and adjusts its connection weight
Wir (n) = wy (n-1) + nd; (n) xx (n) + adwy (n-1) (8)

The most important parameters are 1 (learning rate) and o (momentum term).
Momentum learning is an improvement to the straight gradient descent in the
sense that a memory term (the past increment to the weight) is utilized to speed
up and stabilize convergence.

Appendix B ANN Algorithms for Hydrologic Forecasting

B7



Appendix C
Practical Implementation to an
ANN Model

In this section, an overview for implementing an ANN model using the
software, NeuroSolutions by NeuroDimensions, Inc., is discussed. A process to
select comprehensive and user-friendly software has been conducted. For the
supervised learning with our prediction capability, NeuroSolutions, a premier
neural network simulation environment software, is adopted. We chose the
“Professional” Level of this software package that was easily loaded on a
standard personal computer and was designed to use in a Microsoft Excel
environment. One of major features available in this software package is the
“NeuralWizard” feature. NeuralWizard can be described as a sophisticated
neural network builder that sends commands to NeuroSolutions to automatically
construct a fully functional neural network. The object-oriented simulation
environment of NeuroSolutions gives the user an unprecedented flexibility to
construct neural network simulations. The NeuralWizard aids the user by
encapsulating the network building rules and reducing the user decisions down to
an easy, step-by-step procedure. The following sections summarize the important
design and operational hints found in the supplemental material of instructions
provided by NeuroDimensions, in combination with our working experience
gained from this study.

Using NeuroSolutions for Excel

NeuroSolutions for Excel was designed to allow users to develop a complete
solution to their own problem in one simple package. It gives the user flexibility
to customize operations using Microsoft’s Visual Basic for applications as a
scripting language. Figure C1 shows a block diagram describing the order in
which the NeuroSolutions for Excel modules can be used to solve the problem.
Each step is described below:

(1) Preprocess data module: The main menu item includes differences,
randomize rows, sample, moving average, translate symbolic columns,
insert column labels.

Appendix C Practical Implementation to an ANN Model

C1



C2

Preprocess '\

Analyze Data ‘—) D ata e Tag Data

-y -

Create Data Y Create/Open

iﬁs‘/ ' Network ,

Train N etwork."

Test Network ===y Analyze Data

Figure C1. The NeuroSolutions for Excel modules

(2) Analyze data module: It includes the options of correlation, time series
plot, xy scatter plot, histogram plot, summary statistics, and trend
accuracy. The first three options may be very useful as the screening tool
to determine the data patterns and the relationships between the
individual input and output functions.

(3) Tag data module: The features of this module are to determine the
input/output columns for the ANN model, to select data rows used for
training, cross-validation, and testing, and to clear all tags when
establishing new testing parameters. Other options allow the user to
select a percentage of the data rows to be used for further analysis.

(4) Create data files module: This module is used to create data files either
for all tagged cross-sections within the active worksheet or just to create
partial data files for a particular purpose, such as training files.

(5) Create/Open network module: Starts the NeuralWizard, which guides the
user through the creation of a new NeuroSolutions breadboard. This
“breadboard”, which is similar in design to that used in building an
electrical circuit, serves as a diagram to summarize the configuration of
the model structure and flow path. This building process, in turn, will
select the different panels within NeuralWizard to select the model neural
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network algorithm, learning parameters, non-linear transfer functions,
and number of hidden layers and nodes. After a user completes their
selection, it can be saved to the active NeuroSolutions breadboard.

(6) Train network module: The active NeuroSolutions breadboard is trained
one time and the best network weights are saved. The best network
weights are saved at the specified “epoch” (or iteration) when the cross
validation error is minimum, if a cross validation data set is used. A
report of the training results is then generated. It contains the plot of the
training mean-squared error (MSE) versus epochs and the cross
validation MSE, and a table showing the minimum training MSE, the
epoch at which this minimum training MSE occurred, and the final
training MSE.

(7) Test network module: Tests the active NeuroSolutions breadboard on the
chosen data set and creates a report of the results. During testing, the
learning is turned off and the chosen data set is fed through the network.
The contents of this generated report vary based on whether the
classification or regression reports type was selected. A table reporting
the mean-squared error (MSE), normalized mean-squared error (NMSE),
mean absolute error (MAE), maximum absolute error, minimum absolute
error, and correlation coefficient for each output is then constructed.

Practical Issues of Learning

The performance of ANN learning is believed to be the most critical issue.
There are mainly several practical aspects related to learning. Unfortunately, there
are no formulas to select these parameters. Only some general rules apply and a
lot of experimentation is necessary.

(1) Training set: The size of the training set is of fundamental importance to
the practical usefulness of the network. If the training patterns do not
convey all the characteristics of the problem class, the mapping
discovered during training only applies to the training set. Thus the
performance in the test will be much worse than the training set
performance. The only general rules that can be formulated are to use a
significant amount of data and use representative data. If it does not have
significant amount of data to train the ANN, then the ANN paradigm is
probably not the best solution to solve the problem.

Another aspect of proper training is related to the relation between
training set size and number of weights in the ANN. If the number of
training examples is smaller than the number of weights, it will obviously
produce poor generalization. A general rule: The number of training
examples is at least double the number of network weights. When there is
a big discrepancy between the performance in the training set and test set,
it can be suspected as deficient training. Usually, one can always expect a
drop in performance from the training set to the test set. In case a large
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drop in performance (more than 10-15 %), it is reccommended increasing
the training set size and produce a different mixture of training and test
examples.

(2) Network size: Particularly, this refers to choosing the number of input
and output nodes within the network, and also specifying the number of
hidden layers within that network. At the present stage of knowledge,
establishing the size of a network is more efticiently done through
experimentation. The issue is the following: The number of processing
elements in the hidden layer is associated with the mapping ability of the
network. The larger the number, the more powerful the network.
However, if one continues to increase the network size, there is a point
where the generalization gets worse. This is due to the fact that we may
be over-fitting the training set, so when the network works with patterns
that it has never seen before the response becomes unpredictable. The
problem is to find the smallest number of degrees of freedom that
achieves the required performance in the test set.

It is recommended to start with small sized networks and increase the
size until the performance in the test set is appropriate. An alternative
approach is to start with a larger network, and remove some of the
weights. There are a few techniques, such as weight decay, that partially
automate this idea. In NeuroSolutions, probing the hidden layer weight
activation with the scopes can control the size of the network.

(3) Learning parameters: The control of the learning parameters has been a
problem with no solution in ANN research for a long time. The goal is
that one wants to train as fast as possible and reach the best performance.
Increasing the learning rate parameter will decrease the training time, but
will also increase the possibility of divergence, and of routing around the
optimal value. Since the weight correction is dependent upon the
performance surface characteristics and learning rate, to obtain constant
learning, an adaptive learning parameter is necessary. In general,
modification of learning rates is possible under circumstances, but
several other parameters are included that also need to be experimentally
set. NeuroSolutions enables versatile control of the learning rates by
implementing adaptive schemes.

The conventional approach is to simply choose the learning rate and a
momentum term. The momentum term imposes a memory factor on the
adaptation, and has been shown to speedup adaptation while avoiding
local minimum trapping to a certain extent.

(4) Stop criteria: Stop learning criteria are based on monitoring the mean
square error. The curve of the MSE as a function of time is called the
learning curve. The most used criterion is probably to choose the number
of iterations, but it can also preset the final error. When, between two
consecutive iterations, the error does not drop at least a given amount,
training should be terminated. This gives a criterion for comparing very

Appendix C Practical Implementation to an ANN Model



different topologies. Another possibility is to monitor the MSE for the
test set, as in cross-validation. One should stop the learning when error in
the test set increases. Usually, this is where the maximum generalization
takes place.

To implement this procedure we must train the ANN for a certain number
of iterations, freeze the weights and test the performance in the test set.
Then, return to the training set and continues learning.

Appendix C Practical Implementation to an ANN Model
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